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Abstract
We have studied the sampling performance of conformational search programs using geometric and energetic criteria. Ideally, a conformational

search algorithm should identify the largest possible number of low-energy structures (energy criterion) covering the widest possible range of

molecular shapes (geometric criterion). Geometric analysis consisted in comparing the distribution of conformations within the generated

ensembles by multidimensional scaling and by analysing the eigenvalue structure of the pairwise coordinate covariance matrices. The energetic

comparison was carried out by assessing the energy distribution of conformers after minimizing them all using the same semi-empirical quantum

mechanics optimization protocol. The present investigation focused on five conformational search programs: DGEOM, QXP, ROTATE, LMOD

and OMEGA. We have applied these methodologies to a maximally diverse 604-compound subset of the LeadQuest library. The program LMOD

performs best according to the energetic criterion, whereas a wider range of geometrically diverse conformations is sampled by the other programs,

at the cost of higher median conformer energies. In terms of speed, OMEGA is fastest. We recommend the use of LMOD or OMEGA for high-

quality conformational search applications.

# 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The fast and reliable calculation of low-energy conformer

ensembles are crucially important in a number of computa-

tional chemistry applications, such as pharmacophore searches,

building protein models and the analysis of ligand–receptor

interactions. Exploring the conformational landscape of a

molecule is thus very important for pharmaceutical research.

Considerable efforts have therefore been invested in designing

efficient conformational search algorithms.

In the following we give only a very short high-level

overview of the techniques applied in this important field, and
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advise the interested reader to consult reviews, e.g. [1] for

further details.

Most conformational search methods can be classified into

one of the major categories of stochastic and deterministic

sampling approaches, or into a hybrid class that combines

deterministic and stochastic elements in the algorithm.

Deterministic approaches attempt to enumerate the full set

of low-energy conformations by performing a systematic

conformer space search. A classical implementation is the

‘‘brute-force’’ torsion angle search whereby all rotatable bonds

in a molecule are rotated by a prescribed angle until all possible

combinations have been tried. Due to the exponentially

growing number of torsion angle combinations (known as

the ‘‘combinatorial explosion’’ phenomenon) this approach is

feasible only for very small molecules, and all practical

implementations resort to various heuristics to restrain the

space of accessible conformations. These heuristics include

pruning techniques whereby branches of the search path are

excluded (taboo search, branch-and-bound algorithms, etc.), or
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the use of predefined libraries of small structural fragments

generated by optimization [2] or obtained from experimental

data (‘‘knowledge-based’’ searches).

Stochastic sampling methods explore the conformation

space by incorporating a random element into the search

process. Perhaps the most important methods of this class are

the various Monte Carlo-type (MC) simulations and genetic

algorithms. Mode-following and ‘‘minimum jumping’’

approaches also implement a random walk on the molecular

energy hypersurface. Obviously there is no guarantee that all

low-energy conformers will be identified within a finite

simulation run.

Finally, hybrid approaches include molecular dynamics

(MD) simulations where the random element is represented by

the initial distribution of the atomic velocity vectors, and the

MC/MD combination, where each MC step, designed to

improve sampling quality by forcing ‘‘jumps’’ in conforma-

tional space, is followed by a short deterministic MD run.

Distance-geometry techniques, where a random set of

interatomic distances is selected in such a way that a prescribed

set of distance restraints are satisfied, also belong to this

category because once the full distance matrix is specified the

creation of three-dimensional coordinates (‘‘embedding’’)

proceeds in a deterministic fashion.

Despite all these efforts, the conformational search problem

still remains challenging for complex molecules containing a

large number of rotatable bonds and flexible rings. In practical

modelling work, one often encounters the situation where in the

words of Allinger ‘‘The number of conformations becomes so

large that a complete analysis becomes very laborious. The

results depend not so much on the force field as on the intuition

of the person doing the calculation and which starting

geometries were used for the energy minimizations’’ [3].

Given this state of affairs, it is highly desirable to conduct

systematic investigations of sampling properties, but these

seem to be rather thinly spread in literature. Studies mainly

focus on the retrieval of bioactive conformers [4,5] or on the test

of few molecules with defined energy hypersurfaces [6–9].

Although these studies provide useful insights and suggest

reasonable approaches to overcome the limitations, to our

knowledge no attempt has yet been undertaken to examine

systematically the overall performance of conformational

search algorithms when they are applied to large collections of

pharmaceutically relevant molecules. In this report we set out to

carry out such an analysis, comparing the sampling perfor-

mance of several conformational search algorithms.

Our analysis focuses on the geometric, energetic and speed

aspects of conformation generation. The geometric assessment

was concerned with the extent and uniformity of sampling. We

define ‘‘extent’’ as the size of conformer space occupied by the

generated conformers, whereas ‘‘uniformity’’ measures the

unbiasedness of the sampling, i.e. whether there is a certain

‘‘preference’’ towards subregions of the sampled region of

conformational space. The required statistical methods are

explained in detail in the next section. First, generalized

procrustes analysis (GPA), a method for optimal conformer

superimposition is presented. Distances between the super-
imposed conformers are calculated and multidimensional

scaling (MDS) is used to embed the conformers as points in

an abstract conformation space where the extent of sampling

can be measured. To assess uniformity, the covariances between

the superimposed conformer structures are examined. The

energetic analysis is based on the distribution of conformer

energies. Thus, an assignment of force-field parameters to all

molecules was required and statistical analysis on median

energies obtained from all conformers of a molecule

performed.

Although in physical reality the molecular geometries and

energies mutually determine each other, the geometric and

energetic criteria describing algorithmically generated con-

former ensembles are not completely ‘‘correlated’’ so we used

them separately to assess the conformation search programs in

an unbiased manner. To give a theoretical example: a

systematic torsion grid search without bump checks would

generate an ensemble that samples the conformational space

perfectly but the energy distribution would be totally

unacceptable; on the other hand a perfect global minimizer

would find the lowest energy possible with zero-extent

sampling (assuming one global minimum). All real programs

implement better or worse compromises between sampling

extent and energy distribution and therefore it is justified to

assess both aspects separately.

2. Methods and computational procedure

2.1. Theory

We investigated the performance of NP = 5 conformation

search programs applied in batch mode to a database containing

NM = 604 molecules. Each algorithm generated a set of

conformers for each molecule in the database, whereby the

number of conformers Nconf( p, m) was in general different for

each conformational ensemble of molecule m generated by

program p for reasons explained below. The total size of our

raw dataset containing Ntotal conformations was thus

N total ¼
XNP

p¼1

XNM

m¼1

Nconfð p;mÞ

and we carried out analyses across programs and/or com-

pounds. On average 921 conformers were generated per mole-

cule, which resulted in the production of approximately 2.8

million conformers for all molecules and programs. The rela-

tionships of the conformer sets are best explained on a sche-

matic figure (Fig. 1).

It is by no means straightforward to come up with a

scientifically sound and quantitative measure of conformational

search performance. Ideally, a good algorithm is expected to

find all physically correct low-energy conformers in a

reasonable amount of time. This qualitative requirement can

be decomposed into the following factors:
1. S
ampling: A good algorithm is expected to sample

efficiently, i.e. to visit the largest possible hypervolume in
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Fig. 1. Overview of the analysis process. For each of the NM probe molecules a conformer ensemble containing N( p, m) structures is produced by each of the NP

programs.
conformational space in an approximately uniform manner.

Assessment of sampling efficiency is based on analysing the

dissimilarities between individual conformations in the

generated ensemble using various geometric criteria.
2. E
nergetics: The search must be conducted using a realistic

model of molecular energetics. For practical reasons, most

conformational search methods employ some kind of force-

field based approximation. While these enable fast energy

calculations, they describe physical reality only with limited

accuracy.
3. E
xecution speed: In order to be practically applicable, a good

algorithm should be implemented efficiently. Execution

speed is partly an inherent property of the algorithm itself,

and partly a consequence of the quality of the implement-

ation.

In all assessments we were focusing on evaluating the

average performance of conformational search algorithms

when they are applied to a large dataset containing molecules of

varying size and complexity.

2.1.1. Assessment of sampling efficiency

In order to analyse the extent of conformational space

covered by a conformer ensemble of a given molecule, we first

superposed all conformers within the ensemble using the
generalized procrustes analysis method (GPA). This iterative

algorithm translates and rotates the conformers relative to each

other so that the total sum of squares of pairwise atomic

coordinate differences is minimized. The algorithm usually

converges quickly [10], and delivers an optimal, unbiased

alignment between all members of the ensemble [11]. Only

the heavy (non-hydrogen) atoms were considered in the

alignments.

Next we calculated the matrix of all pairwise similarities

between the aligned conformers in the ensemble using the

Riemann distance as a similarity measure. The Riemann

distance is the natural distance measure between two optimally

aligned geometrical objects in an abstract shape space. This

shape space corresponds to the surface of a hypersphere and the

Riemann distance (the geodetic length of the main hypercircle

on this surface) in it is given by the following expression:

dRiemann ¼ S2
1 þ S2

2 � 2S1S2 cos rðX0
1 ;X

0
2Þ

X0
1ð2Þ denotes superimposed coordinates for two conformers 1

(or 2) and S1(2) is a measure of size of conformer 1 (or 2), while

r is the angle between the two conformers (for a detailed

discussion refer to Ref. [12]). When the two objects are similar,

the Riemann distance can be approximated by the RMS dis-

tance, however, for more dissimilar objects which are likely to
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Fig. 2. Two conformers, X1 and X2, after optimal superimposition. Each

conformer is depicted by a point in conformer shape space. This abstract space

has spherical topology (in general the surface of a hypersphere) and distance

between the two conformers is correctly measured by the arc length, corre-

sponding to the Riemann distance. The RMS-distance is a linear approximation

valid for similar conformers.
be found in well-sampled ensembles the RMS distance is not

appropriate any more (Fig. 2).

The optimally aligned conformer ensemble and the

corresponding dissimilarity matrix was then subjected to

various geometric analyses as described below.

Multidimensional scaling (MDS), also known as embedding,

is a statistical procedure to represent a set of entities as points in

Euclidean space in such a way that the geometric distances

between the points correspond to the pairwise dissimilarities

between the entities. If the dissimilarities are Euclidean

distances derived from an actual n-dimensional point set, then it

is possible to recover the original point set by performing

metric matrix embedding [13]. In most cases, however, the

dissimilarities are not metric Euclidean distances, and therefore

an exact embedding is not possible. In such cases an

approximation is used that was originally introduced in

psychological applications [14]. The basic idea is to force

the embedding into a low-dimensional Euclidean space and

then minimize the difference between the actual and prescribed

distances (dij and d0i j, respectively). The relative error, which is
Fig. 3. Schematic overview of the MDS process. A molecule is sampled by two conf

space by means of the MDS algorithm. The distribution of the points depends on t

conformer space more uniformly than program 2 (red points).
minimized in this procedure, is called ‘‘STRESS’’ and

measures the quality of the embedding:

STRESS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i< jðdi j � d0i jÞ2P

i< jd
2
i j

vuut

In our case MDS was used to map a conformational ensemble to

a set of points in an abstract ‘‘conformer space’’, with each

point corresponding to a conformer. We used a 3D conformer

space so that we could visualize the extent of sampling (Fig. 3).

To quantify the extent of the sampling we have calculated

the volume of the inertial ellipsoid of the point set. This value

does not measure whether the points forming this ellipsoid

cluster into a number of distinct sets or distribute evenly in

accessible conformer space. Thus, the uniformity of sampling

had to be tested in a way that is presented below.

Analysis of the covariance structure. The unbiased GPA

alignment of conformational ensembles offered another way of

assessing sampling. If the sampling is biased, then there are

only a few distinct conformer families in the ensemble and the

family members are highly correlated to each other, whereas

uniform sampling should lead to low correlation between the

conformers. This intuitive notion could be quantified as

follows. We calculated the covariance of the atomic coordinates

between all possible pairs of aligned structures within an Nconf-

conformer ensemble, and stored the values in a symmetric

Nconf � Nconf covariance matrix. Theoretically, if all realisable

conformers are equally well sampled, a certain shape of the

eigenvalue spectrum (‘‘scree plot’’) is predicted, approaching a

constant value for all eigenvalues in the limit of large numbers

(see Ref. [15] for a detailed derivation). If the sampling is non-

uniform then the eigenvalue spectrum of the coordinate

covariance matrix contains a few large eigenvalues.

In a series of preliminary computational experiments we

always found considerable non-uniformity in the sampling

indicated by the eigenvalue spectrum tracing a curve similar

to an exponential function as depicted in the right part

of Fig. 4. As a simple empirical measure we fitted a
ormer generation programs. The conformers are then embedded as points in 3D

he distances among the conformers. Program 1 (blue points) samples a larger
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Fig. 4. Eigenvalue spectra of the correlation of a Gaussian random variable. The dimension of the random variables was 10 and Pearson’s correlation was calculated

for (left) 10,000 and (right) 100 realizations of the random variable. The expected uniform shape is only observed if a high number of tests is performed, whereas

(uncorrelated) random numbers produce a eigenvalue spectrum of exponential shape for few numbers tested.

Fig. 5. Workflow for the statistical analysis of a specific molecule and sampling

program.
single-exponential model to the eigenvalues and the ‘‘decay

constant’’ was taken as a descriptor of non-uniformity of the

ensemble of sampled conformers. Fig. 4 shows numerical

examples for correlations between 10-dimensional vectors

sampled from a multinormal distribution, and demonstrates

that the distribution of eigenvalues is highly dependent of the

number of samples.

2.1.2. Assessment of energetics

We compared the distribution of molecular energies of

conformational ensembles generated by the programs tested.

The programs were ranked according to how often they

delivered the lowest median energy for a molecule in the

database. We used the median to describe the central tendency

of the energy distributions because this measure is less

sensitive to skewness than the mean. A program that always

produced the lowest median energy conformer ensemble for all

NM = 604 molecules in the dataset would be considered

optimal.

2.1.3. Assessment of execution speed

Speed is essential if high-throughput conformational search

is desired. Ideally, the time needed for creation of a ‘‘good’’

conformer ensemble should be measured. In reality, this is

hardly achievable as different conformational search programs

generate varying numbers of conformers of varying quality

which often require post-processing steps (clustering, etc.).

Thus, we have restricted ourselves to the measurement of

production times of conformers, no matter whether the

conformer ensembles needed further refinement or not. Thus,

the average time for one conformer was calculated as the ratio

of the total elapsed CPU-time for a run with a single molecule

divided by the number of conformers generated during the run.
2.2. Computational details

2.2.1. Conformational search programs

We selected the conformational search programs so that a

wide range of methodologies (both deterministic and stochastic)

could be analysed. For practical reasons we restricted ourselves

to programs that were easily available to us. In the following we

provide a brief description of the five programs tested.

DGEOM (# Chiron Corporation, 1995; available from the

Quantum Chemistry Program Exchange as program no. QCPE-

590 for a modest fee): DGEOM employs distance geometry

(metric matrix embedding) to produce conformers satisfying a

set of pairwise atom distance restraints which are generated

using chemical knowledge [16]. Note that this procedure,

although it is also based on MDS, is different from the

embedding of conformers we used for assessing sampling

efficiency (cf. Section 2.1.1). The algorithm is almost purely

geometric, no force-field calculations are involved except for a

van der Waals check to filter out steric clashes. We used the

default parameter settings except that the maximum number of

accepted structures was increased to 2000 conformations, 100
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Table 1

Mean values of sampling extent and sampling diversity for each program

Program Median MDS 3D

volume (�103 Å3)

Median decay

constant

DGEOM 608 �0.52

QXP 468 �0.52

ROTATE 574 �0.54

LMOD 571 �0.62

OMEGA 574 �0.57
trials per structure were allowed and the acceptance rate

(minimum dissimilarity from other structures) was set to 0.3 Å.

QXP (available at Novartis in-house as part of the FLO.01

program suite): QXP employs torsional MC sampling [17].

Rings are sampled by perturbations in Cartesian space. The

sampling temperature was set to 900 K and a maximum number

of 1000 accepted conformers, two minimizations per search

cycle (which uses simplified force fields), and a minimum 30.08
RMS deviation in dihedral angle space for acceptance were set.

ROTATE (Version 1.15, # Molecular Networks GmbH

Computerchemie, available to us under a demo license):

ROTATE is a knowledge-based system, employing dihedral

angles obtained from data of the Cambridge Crystallographic

Data Centre. A set of starting structures with different ring
Fig. 6. Ranking of programs by the extent of sampled conformers. For each molecu

compared and ranked. The histograms show how often a specific program ranked w

largest embedding volumes, followed by LMOD and QXP.
conformations was created with CORINA, as these are not

sampled by ROTATE. The maximum number of rotatable

bonds, which are counted starting from the innermost rotatable

bond, was set to 8, and duplicate conformations which by
le the embedding volume of the ensemble generated by the five programs were

orst, . . ., best. DGEOM is most often ranked the best program producing the
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definition differed by less than 308 RMS deviation in torsion

angle space were filtered out.

LMOD (# Biokol Research LLC; source code available to

the In Silico Sciences unit): This program implements an

enhanced version of the low-mode conformational search

method that jumps to neighbouring local minima on the

potential energy surface by employing an efficient mode-

following technique [9]. LMOD operates by using a detailed

force field; the current implementation relies on the freely

available NAB tool [18,19] which can evaluate potential energy

expressions and perform molecular dynamics using the

AMBER force-field family. Here we have made use of the

GAFF-1.2 force field [20], parameter assignment was carried

out by the ANTECHAMBER program [21]. The calculations
Fig. 7. Comparison of the uniformity of the sampling based on the correlation measu

often.
were performed without explicit solvent, but the dielectric

constant was set to the bulk water value (e = 80) to model

electrostatic screening. This approximation was acceptable

because of the small sizes of the compounds in the dataset. Two

thousand iterations were allowed, and 1500 conformations,

ranked by increasing energy, were accepted. The lowest five

eigenmodes were searched in both directions and structures

with a RMS gradient below 0.1 kcal/mol/Å2 accepted as a new

minimum.

OMEGA (Version 1.8, # OpenEye Software, Inc.; we tested

the software using an evaluation license): This program

employs a knowledge-based approach but the details of the

algorithm unfortunately constitute a trade secret. We used the

program in rule-based conformer generation mode and no
re. DGEOM generates most often the most uniform distribution, LMOD the least
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Fig. 8. A typical energy distribution for a set of conformers. The boxed areas

contain conformers within the second and third quartiles which are separated by

the median line. The whiskers indicate the lower and upper limits of the

empirical distribution.

Table 2

Average energy values: the median energies for a specific molecule and

program have been averaged on all molecules

Program Mean energy (kcal/mol)

DGEOM �38.7

QXP �39.6

ROTATE �39.3

LMOD �40.4

OMEGA �39.8
subsequent energy minimizations were performed. The

criterion for duplicate removal was set to a value of 0.6 Å

RMSD and a maximum of 2000 stored conformations were

allowed.

All programs were run on a Linux cluster at NIBR Vienna

under Suse Linux 9.1. Up to 96 1.8 GHz AMD Opteron B CPUs

have been used.

2.2.2. Data

The LeadQuest Database (Tripos, Inc.) is an in silico library

containing 80,000 drug-like molecules. A representative subset

of this library was selected by means of the OptiSim algorithm

[22]. As the criterion for diversity a Tanimoto coefficient of less

then 0.50 based on UNITY fingerprints was chosen. Thus, a

maximally dissimilar subset of 604 molecules was obtained

(see Supplementary Information).

2.2.3. After-minimization of raw conformers and duplicate

removal

Since the programs use different energy minimization

strategies and force fields, it is not possible to compare the

energy distributions of the conformer sets directly. A possible

solution is to after-minimize the conformers using the same

energetics and minimization protocol for the result set of each

conformation generation program. To this end one would need a

kind of ‘‘gold standard’’ program. We chose the semiempirical

quantum mechanics (QM) package MOPAC (Version 7.0) as an

unbiased after-minimization tool because a QM optimizer

provides high accuracy and would not prefer any classical force

field over another. Note that we do not suggest that QM-based

after-minimization should be used in a productive context when

exploring the conformational landscapes of many molecules in

batch mode; we made use of MOPAC only as an analysis tool.

We used the AM1 Hamiltonian with a gradient RMS

convergence criterion (GNORM) of 0.5 kcal/mol/Å2. The final

optimized geometry and energy (‘‘heat of formation’’) were

used for further processing.

For duplicate removal we clustered the minimized

conformers. Coordinate RMS deviation was used as a similarity

measure without considering intramolecular local symmetries,

and only conformers differing less than 1.0 Å were clustered

together. Clustering was performed using the command-line

version of the XCLUSTER program (Version 1.7, supplied by

Schrödinger, Inc.).

2.2.4. Statistical analysis

In order to compare the five programs in an unbiased

manner, the conformer ensembles must contain the same

number of conformers for each molecule. Since some of the

programs perform conformer clustering to filter out repeatedly

occurring almost-identical conformers while others do not, it

was not possible to set the ensemble size to a predefined value

for all programs prior to the batch runs. As a workaround we

took the smallest number of conformers for a given molecule

and subsampled the other conformer sets by drawing the same

number of conformers randomly. To improve statistical

significance, this procedure was repeated until the estimated
confidence interval for the total population expectation values

fell below 3%.

For all statistical analyses we used the public-domain

statistical modelling package R 2.0.1 [23].

3. Results and discussion

3.1. Outline

Fig. 5 shows all the steps described above in a single

workflow. As soon as statistical data are generated for all

molecules and programs analysis is performed. We employed

the following analysis scheme: for each molecule the results of

the five programs tested are ranked (rank 1 = worst, rank

5 = best performer). Then the programs are compared among

each other in terms of the distribution of these rankings,

considering all molecules.

3.2. Geometric analysis

3.2.1. Multidimensional scaling

This test assessed the size of the 3D ellipsoid occupied by

the ensembles in an abstract conformational space when the

inter-conformer Riemann distance matrix was embedded in R3.

We found that the conformers generated by DGEOM occupied

the largest median volume after embedding, followed by

OMEGA, ROTATE and LMOD (Table 1). DGEOM was also
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most often ranked as the program generating the best (largest)

embedding volume for a given molecule (Fig. 6).

3.2.2. Analysis of covariance structure

Fig. 7 displays a ranking of the ‘‘decay constant’’ fitted to the

eigenvalue spectra of the coordinate covariance matrices

generated by the five programs examined. Again DGEOM

performed most often as the best program, followed by QXP

and ROTATE. If averaged values instead of a rank-based

analysis are considered (Table 1) then QXP and DGEOM give

the best results. We note that the differences between the

programs are quite small. The average ‘‘decay constant’’ of the

worst performing program, LMOD, had a mean value of�0.62,

which is 19.2% different from the best, QXP, �0.52.
Fig. 9. Ranking of conformer analysis programs by energies. For each molecule the

ranked. The histograms show how often a specific program ranked worst, . . ., best

DGEOM performs worst.
3.3. Energy analysis

In this analysis, the median energies of the conformer

ensembles generated by the programs were compared. We

found that the conformer ensembles of ‘‘simple’’ molecules

containing just a few rotatable bonds and rigid ring systems had

very similar energy spectra, no matter which program

generated the conformers (data not shown). On the other

hand, large differences of more than 10 kcal/mol in median

energies were observed for large, highly flexible molecules. A

typical distribution of energy values observed for one molecule

is shown in Fig. 8. The energy distributions created by the

programs examined are drawn here in form of a boxplot. The

energies span a wide range and considerable differences occur.
median energies of the five conformer generation programs were compared and

. The program LMOD creates lowest-energy conformers most often, whereas
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Table 3

Execution times

Program Average time/conformer/CPU (ms)

DGEOM 76

QXP 213

ROTATE 305

LMOD 996

OMEGA 12

Elapsed time per conformer is measured.
Table 2 shows an overview of the obtained averaged values.

Higher energy conformations are mainly observed with

programs QXP, ROTATE, DGEOM and OMEGA. The majority

of lowest-energy conformations is generated by LMOD. This is

evident from Fig. 9, showing that LMOD performs best for

most molecules analysed, with the other programs falling

significantly behind.

3.4. Execution speed

Measurement of execution speed showed a significant

advantage for OMEGA which consumed only 12 ms elapsed

CPU-time per conformer on average on the hardware specified

above. Also DGEOM generates conformers at a very high

speed. The other programs generate an average conformer at a

rate of 200–1000 ms. The LMOD program, which uses the most

elaborated force field performed slowest (Table 3).

4. Conclusion

The general conclusion from our study is that there is no

‘‘overall winner’’, i.e. no single conformational analysis

program provides the lowest-energy conformations at the

highest possible sampling efficiency. The amount of relevant

conformer space of course critically depends on the number of

microstates linked to a certain energy (the density of states) and

the possibility to attain these conformers (occupation prob-

ability). The two characteristics ‘‘energy’’ and ‘‘geometry’’ are

thus intimately related. Interesting results concerning these

findings exist for peptides and the protein-folding problem

[24,25].

If low-energy conformations are desired, then we recom-

mend LMOD. This program appears to bias the sampling

towards the minima of the applied force field, which means that

the geometrical extent and diversity of the conformer

ensembles is limited compared to the others, as the

preferentially sampled lower-energy regions contain fewer

minima. Such a biased sampling is obviously a very desirable

property if the force field approximates physical reality well.

One should note, however, that force field inaccuracies in

general and the difficulty of properly modelling solute–solvent

interactions in particular can seriously limit the usefulness of

conformer ensembles generated in a simple protocol if the

structures obtained are not refined further.

On the other hand, DGEOM and, generally, Monte Carlo-

based programs such as QXP generate a larger variety of
sampled conformations both in terms of sampling volume and

uniformity, albeit at the cost of higher median energies. While

MC simulations generate (after infinite steps) the appropriate

thermodynamic ensemble corresponding to the force field used,

the MC-based conformational search programs usually perform

only simple bump-checks or employ simplified force fields for

efficiency reasons which leads to higher-energy conformers.

The performance of knowledge-based programs is highly

dependent of the implemented rules and patterns. OMEGA

seems to be biased more towards lower energy conformations

than ROTATE, which yields better results in terms of geometry

properties. OMEGA might constitute a viable option if speed is

imperative as it is by far the fastest program and generates

conformers at lower energies than the other programs (except

LMOD). For all these conformer generation programs our

results show that not even after-minimization using a

semiempirical quantum mechanical protocol is sufficient to

move the sampled ensemble towards the more relevant low-

energy regions. Thus, these programs are preferably used

whenever low-energy conformations are not essential. This is

the case if abstractions of a molecule (scaffolds, pharmaco-

phores) or interactions between chemical entities are studied. In

many protein–ligand complexes ligands are not bound in local

minimum energy conformations and also exhibit considerable

strain-energies of sometimes more than 9 kcal/mol [10]. Then,

good performance with respect to geometric properties is more

important than energy considerations.
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